
Introduction
Frequency Tutor is a standalone Java application designed to train an audio engineer to 
identify the frequency of a pure tone. This skill is particularly useful to a live sound 
engineer who must prevent a system from feeding back at certain frequencies; if the 
engineer could identify those feedback frequencies precisely, the system could be 
adjusted to reduce its gain only at the problem frequencies, without causing other 
undesirable effects.

Operation
Frequency Tutor is distributed as a Jar archive. It can be started on most systems by 
double-clicking on the Jar archive, named frequency-tutor.jar. If your system 
cannot start a Java program in this way, use the following command:

java -jar frequency-tutor.jar

Once Frequency Tutor has started, the main window is displayed, as shown in the 
image above. The four buttons displayed control the operation of the program. To the 
right of the buttons is a large black knob, the answer wheel, used to select your answer 
among the choices presented. It can be rotated by clicking on it and dragging in a 
circular fashion.

When Frequency Tutor starts, a new trial is created and placed on the answer wheel. 
The wheel stores a number of possible answers, one of which is the correct frequency 
of the tone played. If the Play Tone button is pressed, the trialʼs correct frequency is 
played for a second or so. You can then turn the wheel until the correct frequency of that 
tone is displayed, and press the Save Answer button to record your answer. The display 

Frequency Tutor Users Guide

page 1 of 5



will briefly change to show you the correct frequency of the tone, and your score will be 
added to the performance graph just under the frequency readout.

The performance graph shows your accuracy in identifying frequencies in each of the 
ten octave frequency bands. Your error is displayed as the number of octaves that your 
answer differed from the correct answer, with a full height bar equal to two octaves 
error.

After the results are displayed, a new trial is calculated and placed on the answer 
wheel. The program will choose a new frequency based on the results stored in the 
performance graph, according to this heuristic: a random band is chosen, and if you 
have never had a tone played from that band, it will be chosen for the new trial. If that 
band has been used in a trial, your accuracy in that band is noted, and another few 
random bands are selected. The band that you performed worst in will be used for the 
next trial.

The performance graph can also be used to control which frequency bands will be used 
for new trials. If you click on the data bar for a particular band, its performance data is 
zeroed and a gray bar is drawn over it to indicate that this band is disabled. This will not 
affect the trial already loaded onto the answer wheel, but it will prevent any new trials 
from using frequencies located in that octave band. You can click on the band again to 
enable it.

The process continues, with new trials presented, and new results displayed. Initially, 
the answer wheel will contain choices spaced one octave apart. If you get the right 
answer most of the time, the octave spacing between the choices will decrease, making 
it a little tougher to get the right answer, but also decreasing the error of a wrong 
answer. If you start to make a series of incorrect answers, the octave spacing between 
choices will be increased, making it easier to get the right answer.

There are two additional buttons, not yet described, that are largely self-explanatory. 
The Play Again button will simply play the tone already played, without affecting the 
scoring. The Skip Tone button will ignore the current trial, and calculate a new trial, 
again without affecting the scoring.

Frequency Accuracy
The synthesizer algorithm used in Frequency Tutor is extremely accurate due to its use 
of double precision floating point calculations. It is also capable of generating any 
frequency within the Nyquist limit of the audio playback hardware, and not just 
frequencies whose period is an integer multiple of the sample period.

The principal limitation of the accuracy of the synthesizer is the accuracy of the system 
sample rate. If, for some reason, the sample rate used by the system is not accurately 
determined, or differs from the value reported to Java, the frequencies generated will be 
in error.

Frequency Tutor Users Guide

page 2 of 5



Also note that the front panel frequency display can only display an integer, but the 
actual generated frequency is double precision floating point accurate, properly rounded 
to an integer.

System Requirements
Any modern device that has Java 1.6 installed should be able to run Frequency Tutor. 
The software was designed to be platform independent, so it should run properly on a 
wide variety of systems.

Your systemʼs display must be large enough to show an 800 by 330 pixel image, plus 
any extra graphics that your operating system places around its windows. On many 
systems, the Frequency Tutor window can be resized, but it will not rescale itself to fit 
the new window dimensions.

Since Frequency Tutor generates a sine wave using the systemʼs audio hardware, this 
hardware must be capable of playing audio with 16 or more bits of resolution and a 
sample rate high enough to allow playback of high frequencies. If a format with 16 or 
more bits is not available, Frequency Tutor will not start up.

The tones played back to the user are generated in real time. If the system is 
underpowered or heavily loaded, tiny clicks or glitches may be heard when a tone is 
played back. Future versions will provide a more advanced buffering scheme to prevent 
this problem, but the current version appears to be usable on a number of systems.

Source Code
Frequency Tutor is free software, licensed to you according to Version 3 of the GNU 
Public License, or any later version. As such, the full Java source code is distributed 
along with the compiled Java code, allowing you to modify the operation of the software, 
study it, repair any problems that you find, and so on.

Please read the details of the GNU Public License, a copy of which is included in the 
release in the file COPYING.txt, to determine your rights and responsibilities. If you 
make any modifications to this code, please send me any changes you have made so 
that these can be incorporated into the official release of Frequency Tutor, allowing 
others to also benefit from your work.

To extract a copy of the GNU Public License from this release, execute the following 
command from the same directory as the release Jar file:

jar xf frequency-tutor.jar COPYING.txt

Alternatively, you can download a copy of the GNU Public License from the Free 
Software Foundation at this URL: http://fsf.org/

Frequency Tutor Users Guide

page 3 of 5

http://fsf.org
http://fsf.org


The source code is packaged in the Jar file containing the executable, and it can be 
extracted using the Jar tool. If this interests you, please get the most current Java 
development kit in order to compile your changes. This program was developed using 
Eclipse, a very powerful integrated development environment, and I highly recommend 
it for developing Java code.

Graphics Files
Frequency Tutor uses a number of graphics files to create the user interface. These files 
are displayed together to form a composite image that is photo-realistic. These files use 
the PNG format with an RGBA encoding. This allows an image to be partially 
transparent, revealing portions of the image below. For example, the buttons have 
transparency around their labels, allowing the front panel brushed aluminum to show 
through, and the entry knob has a shadow, defined in its Alpha Channel, that is cast on 
the front panel image.

The graphics files are normally stored in the Jar file containing the release, and nothing 
special needs to be done to use them. If you would like to override the built in files, 
extract the default files from the Jar archive using the following command:

jar xf frequency-tutor.jar gfx

This command will create a directory called gfx next to the Jar file, containing all of the 
files needed to create the user interface. If you place a PNG file in this directory with the 
same name as a file that was unpacked, your version of that file will get used at run 
time. Make sure that the file you use as a replacement has the same size as the 
standard file that it replaces, so that the layout of the graphics elements is not altered.

The gfx directory that you create for your own modified files does not have to have all 
of the necessary graphics files; any file that is not found in the gfx directory will be 
retrieved from the Jar file, and any file present in the gfx directory will override the file 
stored in the Jar file. Thus, it makes sense to place only modified versions of the 
graphics files in your gfx directory.

Problem Solving and FAQ

Clicks in the Generated Audio
The audio generation algorithm uses buffering to try to produce and play back the tone 
smoothly in real-time. However, on some systems, especially underpowered or heavily 
loaded ones, you may hear clicks while the tone is playing. These clicks are random, 
and not an indication of a problem with your system or the audio hardware. A future 
version will employ a more complex buffering scheme to minimize the likelihood of these 
clicks.

Frequency Tutor Users Guide

page 4 of 5



Startup Problems
If Frequency Tutor does not start up properly, check the Java console for possible error 
messages. Currently, Frequency Tutor does not generate useful error messages on its 
own, so it might be difficult to determine the exact nature of a problem. This will be fixed 
in a future release, but for now, the Java console is the place to find error messages.

Hereʼs an example of what you might see if the Java class loader cannot find the class 
containing the main() method:

6/13/11 Jun 13, 2:59:47 AM
! [0x0-0x8bc8bc].com.apple.JarLauncher[40821]! Exception in 
thread "main" java.lang.NoClassDefFoundError: Frequency_Tutor

In this case, your Java installation might not be configured correctly. Check the 
classpath that Java uses to load executable code and make sure that ʻ.ʼ (dot) is in 
the path.

If Frequency Tutor cannot find one of the graphics files used for the user interface, or if 
it is somehow corrupt, it may fail with a null pointer exception. This is probably because 
you created a gfx directory to override the built-in graphics, but it contains a broken 
graphics file. In this case, delete the gfx directory located next to the file frequency-
tutor.jar to force it to use the built-in graphics, and then resolve the issue you have 
with your custom graphics.

Other Issues and Feedback
My goal is to make sure that Frequency Tutor is useful and stable software, able to run 
on a wide variety of computers and other devices. I would appreciate hearing about any 
problems you have with the software, as well as any suggestions you may have for 
improvement.

While I canʼt guarantee a reply or a solution to your problem, please email any 
comments or suggestions to monte@alum.mit.edu and I will try to address the issue.

I am also quite interested in knowing whether using Frequency Tutor has helped you to 
identify frequencies more accurately, how you use the software, and any suggestions 
you have for improving the training process.

Have fun, and I hope you find Frequency Tutor to be useful!

Frequency Tutor Users Guide

page 5 of 5

mailto:monte@alum.mit.edu
mailto:monte@alum.mit.edu

